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Abstract

The method used by Carmeli to obtain a new form for the principal scries of representa-
tions of the group SL(2, C) is further generalized to all completely irreducible (finite and
infinite-dimensional) representations of that group. This is done, following Naimark, by
extending the meaning of one of the parameters appearing in the formula for the operators
of the principal series of representations. As a result a new form for the complete series
of representations of the group SL(2, C) is obtained which describes the transformation
faw of an infinite set of quantities under the group translation in a way which is very
similar, but as a generalization, to the way spinors appear in the finite-dimensional case.
The finite-dimensional representation is thén discussed in details and the relation between
the new set of quantities {which bécomes finite in this case) and 2-component spinors is
found explicitly.

1. Introduction

The generalization of 2-component spinors, which appear in describing
the finite-dimensional representations of the group SL(2, C) when realized
in the space of polynomials, has recently been suggested by Carmeli (1970).
He introduced an infinite set of quantities] associated with the principal
series of representations of that group in a way which is very similar, but as
a generalization, to the way spinors§ appear in describing the finite-
dimensional representations. The transformation law of these quantities,

1 Supported in part by the Colgate Research Coungil and the Sloan Foundations.

1 Just as in the spinor case these quantities should be considered as functions of space-
time when appliéd in physics.

§ Throughout this paper the term spinor is used to mean symmetrical spinor,
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at the same time, defines a new form of the principal series of representations
of SL(2, C).T As is well known, spinors appear (up to factorial terms) as
the coefficients of the polynomials of the space in which the representation
is realized, whereas their transformation law provides another form of the
representation (Naimark, 1964).

The method used for the principal series was subsequently extended by
Carmeli & Malin (1971a, b) to the complementary series of representations,
thus establishing new forms for all irreducible unitary representations (to
within unitary equivalence) of the group SL(2, C).

In this paper we extend Carmeli’s result to all completely irreducible
(finite- and infinite-dimensional) representations of the group SL(2, C), thus
obtaining a new form for the (infinite-dimensional) complete series of
representations, on one hand, and recovering the (finite-dimensional)
spinor representation written now in terms of our quantities instead of
2-component spinors, on the other hand.

In Section 2 we present our form for all the completely irreducible
representations and compare it with that of Carmeli for the principal
series. Section 3 is devoted to discussing the finite-dimensional representa-
tion. A detailed analysis is presented in order to establish a direct relation
between our quantities for this case and the 2-component spinors. This
relation is shown to be a simple lincar transformation. In Appendix A we
briefly review the spinor representation, whereas Appendix B is devoted to
detailed calculations of certain functions appearing in the formula for the
operators of the representation.

2. The Complete Series of Representations

The complete series- describes all the infinite-dimensional irreducible
representations, to within equivalence, of the group SL(2, C). The meaning
of equivalence here is such that the spaces of two equivalent represcntations
need not be isometric, but it is the formulas which are essential for the
representations and not the norm of the space. In fact, the formula of the
representation of the complete series is the same as that of the principal
series except for the meaning of one of the parameters whose value is now
extended to the complex plane and, as a result, the representation ceases
to be unitary§ in gencral (Gelfand & Naimark, 1947; Naimark, 1954).

1 We recall that SL(2, C) is, of course, the group of all 2 x 2 complex matrices with
determinant unity, and it is the covering group of the restricted Lorentz group describing
homogeneous Lorentz transformations which are orthochronous and proper, See, for
example, R, F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That
(Benjamin, New York, 1964).

$ For the physical significance of nonunitary representations of the Lorentz group sce
A. O, Barut and S. Malin, Review of Modern Physics, 40, 632 (1968), Appendix B.

§ Every irceducible unitary representation of the group SL(2, C) is unitarily equivalent
to a representation of either the principal series or the complementary series of repre-
sentations.. These two series are, of course, included in the complete series as particular
cases, i
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As for the principal and complementary series, the complete series may
be realized in several ways according to the space of realization. For our
purpose, just as for the principal series case, the particular realization of
the complete series by means of the special unitary group SU,, is employed.

We denote by L3(SU,) the set of all functions ¢(u), where ue SU,,
which are measurable and satisfying the conditions

byu) = e"¥ $(u) .0
[lp@du< o @2
where y € SU, is given by
-2
V= ((e) ew;:) (2.3)

Here L3*(SU,) provides a Hilbert space (Naimark, 1964; Carmeli, 1969)
where the scalar product is defined byt

($162) = 160 B) @4

The complete series of representations, following the notation of Naimark,
is then given by the formula (Naimark, 1964)

alug) .~
Y, i) = ~——— (U, 2.5
where
g1 812

= 2.6
£ (gzx gzz) 26)

is an element of the group SL(2, C), and «(g) is a function given by
a(g) = g33] g22| "2 27

Here p is a complex number and 2s'is an integer, where p? # —4(|s| + k)2,
k=1,2,3,...The expression ug, appearing in the representation formula
(2.5), denotes a matrix of the group SU, which is determined by means of
u and £ (up to an arbitrary phase factor) and whose explicit expression is
given in Appendix B.

+ The integrals in equations (2.2) and (2.4), and throughout this paper, are invariant
integrals over the group SU, which satisfy the conditions

J-f (uu)du = f Sl u)du= j S du
for any u, € SU,, and

fj’ (W YHdu= ff () du

fdu =1
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Consider now all possible systems of numbers ¢j, where m = —j,
—j+1,..,jand j=|s|, |s| + 1, |s| + 2, . . ., with the condition

© 7 X

,%‘1 @j+D 2 |gnlP<e (2.8)
=|$ M= j

The aggregate of all such systems ¢}, forms a Hilbert space, which is

denoted by /3%, where the scalar product is defined by

S @i+1) S L, 29)
J=1s} m=—j

for any two vectors ¢, and Y% of I3°. With each vector ¢/, € /3° we associate
the function

© J
$u) = Ez‘x @i+ 1) 2 4T (2.10)

J=1s m=—j
where T7(u) is the matrix element T7,(u) of irreducible representation of
SU,. Since (Naimark, 1964)

To(yw) = e T7(w) 2.1

the function given by equation (2.10) belongs to the space L¥(SU,). On
the other hand every function in L3*(SU,) can be written in the form (2.10)
since TJ(u) provide a complete orthogonal set (Carmeli, 1969).1 The two
spaces LZ(SU,) and /2* are, in fact, isometric where the transition from
one space to the other can be made by means of the generalized Fourier
transform

¢4 = [ $) Th(u) du 2.12)

Similarly to spinors which appear as coefficients in the polynomials of
the space of representation (see Appendix A) we see that the numbers ¢/,
appear as coefficients in the expansion given by equation (2.10) of the
functions ¢(u) of the space L2*(SU,). By means of the mapping (2.12) the
operator V, of the representation (2.5) may also be regarded as an operator
in the space /3* whose explicit expression is given below. This expression
also defines another form of the complete series of representations.

Applying the operator ¥/ to the function ¢() as given by equation (2.10)
one obtains

_ . a(ug),.,
V,¢@)= g @j+1 g ¢,{,;@5 T (ug) (2.13)
or

Vo dlu) = %. @+ % o }Z @j"+1) Z Vin(8:50) T () (2.14)

t The functions T4,,(«) satisfy the orthogonality condition
f TL) T o) = Q2+ 1) 87 Gy 5o
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where
Viin(gis.0) = [ ST T ) @19)
Accordingly one obtains
Vo) = g @i+ 1 Z~ ¢ T u) (2.16)
where, using equation (2.14), one obtains
2 @i+h Z Vir(g;s, p)én @217

Thus the operator ¥, of the complete series of representations of SL(2, C)
in the space /%° is the linear transformation determined by equation (2.17)
describing the law of transformation of the quantities ¢, where j= |s],
Is|]+1,1s| +2, ..., and m=—j, =+ 1, .. ., j. The matrices V%, (g;s,p)
are functions of g € SL(2 C)and of p and s, where p is a complex number
and 2s is an integer.

Tt wiil be noted that our formulas are identical to those of Carmeli (1970}
for the principal series except for the meaning of the parameter p which is
now complex. One can show that every completely irreducible representa-
tion of the group SL(2, C) is defined by the pair of numbers (s, p) where 2s
is some integer and p is some complex number; the pairs (s,p) and
(—s,—p) define the same completely irreducible representation. When
p* # —4(|s| + k)%, wherek = 1,2,3,. ., then the representation is equivalent
to the complete series;t when p? = —4(|s| + k)%, k=1, 2, 3, .. ., the repre-
sentation is equivalent to the finite-dimensional spinor representation of
the group SL(2, C). In the next section we find explicitly the relation between
spinors and our-quantities ¢/, when the latter choice for p is made.

3. Relaticn to Spinors

We have seen in Section 2 that the representation formula (2.5), corre-
sponding to all pairs (s,p), where p? s —4(]s] + k)* with k=1,2,3,..,,
describes the complete series of representations.

When p?=—4(|s] + k)%, k=1, 2, 3, .. ., the representation (2.5) is not
irreducible and one obtains the usual finite-dimensional spinor representa-
tion, This fact enables us to establish a direct relation between our quantities
in the finite-dimensional representation and the 2-component spinors
appearing in this case. We show below that this relation is a simple linear
transformation.

t In view of the simplicity of formula (2.17) for the complete series, the question arises
as to whether the complicated construction for the complementary series of Carmeli &
Malin (I97.a, b) was needed, The answer is, of course, that the representations in the
complete series, which are equivalent to the complementary series, are not unitary
whereas the representation given by Carmeli & Malin (19712, b) is unitary.
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To see that indeed when p? = —4([s| — k)? the representation (2.5) is not
irreducible we proceed as follows.

Suppose that p =—2i(|s| — k) and denote by P,y the set of all homo-
geneous polynomials in u,,, iy, t1;, and i,,:

p()= . ;Z; s oy i3y 05, U3, 03, 3.1
with the conditions
a—-B+y—958=2s (3.2)
a+p+y+5=2s|+2k-2 (3.3)
where k =1, 2, 3, . ... One can easily see, using (3.2), that
plyu) =" p(u) (3.4

where y is given by (2.3). Therefore P,y is a subspace of the Hilbert space
L3(SU,). We show that P, is invariant with respect to the operator V, of
equation (2.5). To this end one writesT

g=u, e, (3.5)
where u, u; € SU, and ¢ is given by
(32 O
£= (0 522) 3.6

with £22 2 real number. Since ¥V, =V, V, V., it is sufficient to show that
P,y is invariant under each of the operators Vip Veand ¥V, . Now

etl1aay)
a{ui ‘)p

It is shown in Appendix B that o, )/a(ut,) is equal to exp (2isA), where A
is.an arbitrary real number. Also, a direct calculation, using (B14), shows
that

plui) = 2 exP[’A(““ + B~y + 8)] gy st )5, (ute )3 (et )3, ()3,
(3.8)

Va p() = ui,) 3.7

Hence, using the condition (3.2), one obtains

Vi p(u) = p(aay) (3.9
which shows that P, is invariant with respect to the operator ¥, , (and,
of course, to ¥, )

Similarly, P,y is invariant with respect to V,, where

Vip(u) = “E“‘;

t Every g € SL(2, C) can be written in the form (3.5). See, for example, Naimark,
1964, p. 164,

p(ui) (.10
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In Appendix B it is shown that a(ue)/x(1€) is equal to exp(2isAd)|A]*~2,
where |2] is given by (B17). Furthermore, onc easily verifies that

pg)= 3 explid(—a+ f—y+8)}|A| CrEry+D grg-hived
2,8,7,8
X Gypys i3, 05, U3, 03, 3.11)
Using the conditions (3.2) and (3.3), and the fact that p = —-2i([s| + k), one

finds
V,p(u) = BZ , e3Pt st 15, 13,115, (3.12)
a.B.7¥,

This shows that V,p(u) is a polynomial in the space P,y Hence Py is
invariant with respect to the operator ¥,, and therefore the representation
(2.5) is not irreducible when p = =2i(|s| — k), A=1,2,3,.. ..}

To see, in fact, that this is the spinor representation (see Appendix A)
we put

M= s+2p 1, N=—«s+2p I (3.13)
Then, by (3.2), (3.3) and (3.13), one obtains
y=M-a, é=N-§ (3.19
Accordingly, (3.1) can now be written as
M N
P =3 3 apu, a iyt (3.15)
a=0 ﬁ=0

Comparing (3.15) with (A16) we see that the quantity a,, is just n¥?p,..
Hence a,, is related to spinors, by (A6), by

Q=" MINIGa . ay,.. %y (3.16)

WithAl +A&[ a,X +- +XN=B'

We are now in a position to find the connection between spinors and the
quantitics ¢, in the finite-dimensional case. Since p(u) € L2(SU,), one can
expand it into a generalized Fourier series,

i) = 2 @j+1h mg_ &5, T (1) G.17)
where ¢}, is related to p(1) by
¢4 = [ p(i) Thtw) du (3.18)
Using the expression (3.15) for p(u) in (3.18) one obtains
#h=3 > Citya, (3.19)

t The representation (2.5) is not irreducible also when p = 2i(|s{ + k), k=1,2,3,....
since the pairs (s,p) and (—s,~p) define the same completely irreducible representation,



152 M. CARMELI AND S. MALIN

where C/MY are some numerical coefficients,

CMY = j Tius, ab, b ads P du (3.20)
And in terms of 2-component spinors, by equation (3.16), one obtains
¥x iMN
o= agoﬁ;?b Coas ¢Al...AMX,...J?,,. (3.21)
where
CiM¥ = ' 2 MINICIMY (3.22)

HerCA1+"‘+AM=d,Xl+"'+.XN===ﬁ.

Appendix A: Spinor Representation

For completeness we briefly outline in this Appendix the spinor repre-
sentation of the group SL(2, C). For more details the reader is referred to
the classic book of Naimark (1964). .

We denote by P, the aggregate of all polynomials p(z,Z) in the variable z
and its complex conjugate £ of degree not exceeding m in = and n in Z,
where m and # are fixed non-negative integers determining the representa-
tion, The space P, is a linear vector space where the operation of addition
and multiplication by a number are defined in the usual way for polynomials.

An element of the group SL(2, C) will be denoted by

e=(% 2) (Al)

c
where g, b, ¢ and d are complex numbers safisfying the condition
Define the operator T, in Py, by

T,p(z,2) = (bz + dy"(Bz + dy p(

az+c¢ dZ+¢
bz+d"55+d)

The correspondence g — T, is a linear representation of the group SL(2, C)
as can be easily verified. This is the spinor representation of SL(2, C) of
dimension (m + 1)(n + 1).

In order to relate this representation to the 2-component spinors, one
realizes it in a somewhat different way.

One considers all systems of numbers ¢,, .. 4.%,...x, Symmetrical in
both the indices 4,, . . ., 4,, and in X, . . ., X, taking the values 0 and 1.
The set of all such systems of numbers provides a linear space, denoted by
Sy of dimension (m + 1)(n + 1),

A one-to-one linear mapping between the spaces P, and S,,, can easily

(A3)
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be established. To each system ¢4, .. 4 x,...1, € Sm, there corresponds the
polynomial

p(z,2) = 2

. d’A,...A,,,X‘...X,,ZA‘+"'+A'"EX’+"'+X" (A4)
grernr Ay

of degree not exceeding m in z and # in Z, and therefore p(z,%) € P,,. On
the other hand every polynomial

p (2’5) = ?} D2 E° (A3)

in P, can be written in the form (A4) if one relates the ¢’s and p’s by means

of
1

¢Al...A,.\"l...,\",, mmﬁu (A6)

with 4, +- <+ A4, =r,and X, +-+ -+ X, =s..
A second form of the spinor representation is then obtained if one
applies the polynomials (A4) in equation (A3). Onc obtains

f~"e.l’(zu'f)=/i Zﬁ Bay..oanx,.. g, 20 M An Tt K (AT)
o

where we have used the notation
r - -
¢A‘...A,,,x,...x,= ZB a,a,sx'-~a,4,,,s,,,ax,fr,~--ax,,y‘,,¢s,‘..8,,,i,‘..x",

} 79998 A (A8)
and where g, = a, a,0= b, a5y = ¢, and g = d.

The linear transformation (A8) determines the operator T, of the spinor
representation in the space S,,,. The quantity ¢, .. x,...x, IS a spinor
having m undotted indices and » dotted indices.

Finally, Iet us denote p(z,2) by f(z), and let

a(g) =85, 8% (A9)

{811 &2
& (321 8’22)

is an element of SL(2, C). Equation (A3) can then be written in the form

where

T, f(2) = o(z8) f(22) (A10)
Here z denotes a complex variable and also the matrix
10
z= ( z 1) (A1D)

and the matrix z’ = zg amounts to a transformation in which the variable
z goes over into the new variable

2 =g3./8:2 (A12)
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where the matrix g’ € SL(2, C) is given by

’ 811 812 )
= FO o= Ai3
& ° (gllz+g21 8122+ 822 (A1)

So that the new variable z’, according to (A12) and (A13), is given byt

zl=gllz+g21 (A14)
g122+ 82
If now we write}
¢@) = n'a(u) f(z) (AL5)
where 1, z € 3,.§ and z = u,,/ut,,, then
o(u) = n'’? Z z Des U UBTT 05, 133° (A16)
r=0 5=0

Hence ¢(x) runs through all polynomials which are homogeneous in u,,,
uy, of degree m and in #,,, i,, of degree n, and p,, are related to spinors
by (A6). Let P,,, denote the set of all such polynomxals Then P, is the set
of all polynomials homogeneous of degree m+n in uy,, uy;, iy, 2,
satisfying the condition

Gyu) = '™V $(u) (A1)

where 7 is given by equauon (2.3). The operators of the representation in
the space P,,, are then given by the formula

afug) , . .
e )¢( i) (A18)

where ¢(u) € P,, and ug is a matrix of SU, whose explicit expression is
given in Appendix B. Comparison of (A9) with (2.7) gives

T, ¢(w) =

i i
m--2-p+s—-1, n—-2—~p—s-—1 (A19)

Appendix B: The Matrix ug

The expression ug appearing in the representation formula (2.5) and
throughout this paper means, following Naimark, a unitary matrix which
belongs to a right coset, #5.] In this Appendix an explicit expression for ug
is given, in terms of the two matrices i and g.

+ For more details, see Naimark, 1964, p. 142,

1 The aggregate of functions f(z) provides a Hilbert space in which one can also
realize the complete series of representations. For more details, see Naimark, 1964, p. 170.

§ 7 is the set of all matrices kg, where g € SL(2, C) is fixed and k varics through the
entire group of matrices of the form given by (B3). For more details, sce Naimark, 1964,
p. 140,

il For details, see Naimark, 1964, Section 11, p. 154; and Carmeli & Malin, 19714,
footnote 7.
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Let us denote the matrix ug by «’. Then #’ can be written as

ug, U, o B
(i )5 %) @
with the condition
2+ B2 =1 (B2)
One can then showt that ug = k.ug = ki, where k is a matrix having the
form
AU o
k= (0 j ) (83)

where 1 and p are complex numbers, and 4 # 0. If one denotes now ug by
g’, then one has g’ = ki, or explicitly

i I B
(i s)-G (5 = @
This gives
g2y =—/p’, 82, = A (B5)
from which one obtains
o' = g3,/4, B =2,/ (B6)
Furthermore, using the condition (B2), one obtains
|41 = |g2:|* + | g22)? (B7)
But g’ = ug. Let us denote u by
Uy Uy a
U= = il BS
(”z: sz) ("3 cz) (85)
and g by
gu &2
= B9
g (821 822) (89
then
g &2} _ ( agu+Bga 08+ Bga
, = i L (B10)
821 822 —Bgu+ g —Pgix+ g

If we write now 1 =|1|exp(id), where A is some real number (phase),
then one finally obtains for (B6) and (B7)
o = (—fg12 + ag2;)|A] "t e
B = (Bg1 — ag2 )| e (B11)
t See Naimark, 1964, p. 158.
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and
{22 = B8y, — a2y |* + |-B3 12 + ¢820|? (B12)

Hence, ug is determined by means of # and g up to an arbitrary phase factor.
Equations (B11) and (B12) can now be used to calculate the.ratio
a(ug)/o(ug), appearing in the representation formula (2.5), for two cases
of particular interest:
(a) g is a unitary matrix, v,

U= (_gc’ g“) 3 a2+ |Ber =1 (B13)
0 4]

Then one obtains
o« = (—BPo + azo) e
B = (Bao + afo)e

Al =1 (B14)
and
a(ttle) 304
aluiiy) ¢ (B13)

(b) g is the matrix given by
g5 0
={3 Bi6
£ (0 522) (B16)
where ;. is real. One obtains

o = agylA T e
B = ezl

|22 = |B]*ezf + |of*ed, (B17)
and
a(Ue)  aiipoz s
&-(—&5——}).;‘ 2g2tsa (Blg)
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